6475	10 2:30 H	MSC1MatC102x Seat No : M.Sc.(Maths.) Semester - 1 (<i>CBCS</i>) Examination Oct/Nov2019 - [NEW COURSE] Real Analysis (Core (New))	- ·ks: 70
Instru	ictions:		1.5.70
	•	ons are compulsory. the right indicate marks.	
Q.1		Answer following short questions: (Any SEVEN)	(14)
	(i)	Write all possible algebra of sets for a set $X = \{a, b, c\}$.	
	(ii)	Define σ –algebra of sets.	
	(iii)	Show that an outer measure of a singleton set is zero.	
	(iv)	Show that a null set is measurable set.	
	(v)	Discuss Riemann Integral.	
	(vi) (vii)	Define point-wise convergence. Define measurable function.	
	(vii) (viii)	Explain Function of Bounded Variation.	
	(ix)	State Fatou's lemma.	
	(x)	Define absolute continuity	
Q.2		Attempt any TWO.	(14)
	(a) (b)	If f is measurable function and $f = g \ a. e.$ then show that g is measurable function. Define Characteristic function and prove that a set A is measurable if and only if its	
	(c)	characteristic function χ_A is measurable. Show the existence of non measurable set.	
Q.3	(0)	Attempt the following.	(14)
Q.0	(a)	State and prove Bounded convergence theorem.	(14)
	(b)	Let f and g be integrable functions over E then prove that the function cf is integrable	
		over E and $\int_E (cf) = c \int_E f$.	
Q.3		OR Attempt the following.	(14)
Q.3	(a)	Let f and g are bounded measurable function defined on a set E of finite measure then	(14)
		prove that $\int_E (af + bg) = a \int_E f + b \int_E g$.	
	(b)	State and prove monotone convergence theorem.	
Q.4		Attempt any TWO.	(14)
	(a)	Let f be an increasing real – valued function on the interval $[a, b]$. Then show that f is differentiable everywhere and f' is measurable.	
	(b)	If f is of bounded variation on $[a, b]$ then prove in usual notations $T = P + N$.	
Q.5	(c)	If f is absolute continuous on $[a, b]$ then show that it is of bounded variation on $[a, b]$. Attempt any TWO.	(14)
	(a)	Prove that a function F is an indefinite integral if and only if it is absolute continuous.	
	(b)	State and prove Minkowski's inequality.	
	(c)	State and prove Holder's inequality.	
	(d)	If a normed linear space X is complete then prove that every absolutely summable series in X is summable.	
